维修常见问题
    联系我们
    维修常见问题
    你的位置:首页 > 维修常见问题

    纯甲类功放知识介绍

    来源:      2022/5/8 11:19:06      点击:

    纯甲类功放

      所谓甲类或纯甲类功放,实际是按静态工作点分类的功放中的两个子类。而按照这种分法,常见的HIFI功放可分为则包括甲类功放、纯甲类功放、乙类功放、甲乙类功放四大类。
     
      简单来说,他们的区别只在于功放在接收到正弦信号时的工作状态,再通俗点说,就是功放是否一直处于工作状态。在这里,甲类功放甲类放大器的功率输出管在信号的正、负半周均处于导通状态,全周期处于导通的工作状态,不存在开关失真和交越失真,但静态电流相当大,工作效率较低,成本较高。它的好处是声音好听,但效率不高,因为功放在没有输入信号的时候仍然空转,实际上长时间处于一种待机工作状态;纯甲类功放,则是一种比甲类功放更讲究的功放。它与甲类功放的区别就在于,在甲类的基础上加了正反馈控制,目的是使功放始终保持在峰值状态运作,这样声音的效果更好,但效率也就更低;而乙类与前二者的最大分别就是在设计时考虑更多的是工作效率,不给功放输出管加静态电流,有信号时工作,没信号时就不工作,对于听者而言,就会因这种切换中的失真,而产生耳朵坐过山车的感觉;而甲乙类功放,顾名思义则是对甲类和乙类两者的整合。它在对电路设计时,给三极管加了很小的偏置电流,减少了失真。这样,从听音效果上力求偏向甲类,而在使用效率上偏向乙类。
     

      说到这里,很多人可能会问,那么是不是纯甲类一定好过甲类,甲类又好过甲乙类,甲乙类又好过乙类呢?牵你右手的回答是,未必。作为HIFI发烧友,唯一可以马上出局的是乙类功放。作为其他三者,各有各的特色。何况只从参数去看功放,本身就是不客观的。在功放的选择更多的还是发烧友们自己用钱包衡量性价比,同时用耳朵收货,不要轻易在甲类和纯甲类前迷失方向,毕竟它们只是两种设计思路而已。

        纵观目前市场上的HiFi功放, 输出功率在100W以上的以甲乙类放大产品居多,50100W的功放中甲类放大产品占有相当的比例。从高保真的角度来看,功率储备大些当然是好,但若从节省能源的角度来看,就值得考虑了。由于纯甲类功放的效率很低,所以在您欣赏美妙音乐的同时,约有百分之七八十以上的电能变成热量散发掉了。一台每声道输出功率为50W的纯甲类功放,若以30%计其效率,则静态功耗就有 330W之大,说句玩笑话,简直是守着火炉吃西瓜。笔者在帮人选购功放时就经常遇到这样的情况:很多人虽然为纯甲类功放的音色所倾倒,但也往往因其 发高烧的工作状态而忍痛割爱。功耗大也是电子管功放的致命弱点。市场经济是无情的。国内几家有名的生产胆机的厂家,如斯巴克、欧博、大极典也先后推出了自己的晶体管功放,就证明了这一点。
      根据我国国情,一般工薪阶层的居室面积多在二十平方米以下,并且通常以客厅或卧室兼作听音室。若音箱的灵敏度在89dB以上,则1020W的纯甲类功放就可满足一般欣赏要求。如果在歌舞厅里那样的环境中让我们的耳朵长期承受大音量,听力就会逐渐减退。再说,吵得左邻右舍不得安宁,也不合适。所以说,如果生产一些功率在15W左右的音质音色较好的功放,静态功耗在100W以下,肯定会有市场。可惜这类功放是个空白。日本金嗓子有一款A20,每声道纯甲类功放20W,音质有口皆碑,但价钱却令人望而却步。现在,国内生产功放的厂家似乎在攀比,功率越做越大,重量越做越重,但销路却不见得很好。何不制作一些好吃不贵的功放来投放市场呢?本着这个思想,我们设计了这台15W纯甲类功放,试图在这方面做一些尝试。

    一、 电路原理与特点

    1.功放部分(见图1


      由VT1 VT2组成差动放大电路,每管静态电流约为0.5mAR3VT1的集电极负载电阻,VT1与推动级VT4之间为直接耦合。输出级由两只型号相同的 NPN型大功率晶体管VT5VT6组成,而没有采用互补对称推挽电路。输出管VT6对于负载(扬声器)来说是共发射极电路,而VT5则是射极输出电路,因此是不对称放大。但实验测试表明,整个放大电路在取消大环负反馈(将R5短路)时的开环失真却很小,而且主要是偶次谐波失真。这个功劳应该归功于推动级电路。推动电路是本机最具特色的电路,它的作用和效果与传统的RC自举电路相比,有过之而无不及。VT4为集-射分割式倒相电路,分别由其集电极和发射极输出一对大小相等、方向相反的信号。VT4对于输出管VT6来说为射极输出电路,电压放大倍数小于1。从VT4集电极输出的信号通过交流电阻很小的发光二极管VD1,加到输出推动管VT3的基极。VD1的正向导通压降约为1.9V左右,可看作一个噪声很小的稳压二极管,它使得VT3的发射极电阻R7两端的直流电压UEC基本不变,约比VD1的稳压值小0.7V。对交流信号而言,R7是与VT3的发射结电阻相并联的。VT3VT5组成同极性达林顿式复合管。因此推挽放大的上臂是由一级共射放大电路(VT4)和二级射极输出电路(VT3VT5)构成的,而推挽电路的下臂是则由一级射极输出电路(VT4)和一级共射放大电路(VT6)构成,可见是不对称的推挽放大电路。故在选择放大管时,这几只管子的电流放大系数也不必配对。这一点在工厂大批量生产时尤为重要,可以大大降低成本。该样机各管β值如下:β1=β2=110 β3=50β4=90β5=70β6=90。也就是说,要把β值较大的管子优先安排为VT4VT6。该功放电路的开环电压放大倍数约为504,闭环电压放大倍数由R4R5决定,约为15.7。甲类推挽功率放大电路的理论最高效率为50%,该样机实测最大不失真输出电压的有效值为11V,折合成输出功率约为15W),静态功耗约为40W,因此最高效率为37.5%。当无信号输入时,效率为零,40W功率几乎全部消耗于两只输出管上,因此要加上足够面积的散热器,并且保证通风情况良好。
      总之,该功放有以下特点:(1)功率输出管的电流放大系数不需配对;(2)用笔者设计的推动电路取代了传统的自举电路,频率响应好;(3)输出电压幅度大;(4)电路简单、调整容易、便于制作。

    2.稳压电源部分(见图2


      由于功放为OCL电路,输出端与扬声器直接耦合,故一般应加装延时保护电路,但由于该机采用了具有短路保护及软启动功能的±17V双路稳压电源,故省略了这部分电路。正负稳压电路均采用集电极输出式调整电路,效率高且具有短路保护功能,但不能够自启动。VT7VT9组成复合电源调整管。VT11为取样放大管。由于VT11的基极接地,故发射极电位必须为-0.7V才能使它工作于放大状态。所以R19的下端不能接地,而是接至-17V。所以,如果万一负输出电源对地短路,将会使 VT11的发射极与基极间的电压为零,从而使VT11截止,这样调整管VT9VT7因得不到基极电流也截止,结果使得正输出电源电压为零。由于正、负稳压电路是对称的,故当正电源对地短路时,也会使负电源电压为零。功放电路的输出端省却了扬声器保护电路的原因也在于此,万一有一只输出管发生击穿短路,另一只输出管也会由于上述保护功能而得不到电源电压,这样扬声器中就不会有大的直流电流通过,从而有效地保护了扬声器。
      该电源的输出电压基本上由VD4VD5两只稳压管的稳压值决定,约比它们的稳压值低0.7V左右(即减去VT11VT12的发射结直流压降),故对两只稳压管要仔细挑选配对。
      输入端滤波电容器每边采用两只4700μF的电解电容器并联使用,而输出端的滤波电容器每边仅采用一只10μF的无极性电容器。通过样机实测,当输出电流为2.4A(满载)时的纹波电压很小:正电源侧为0.8mV,负电源侧为1.25mV。此外,波形并非100Hz的锯齿状,而是频谱较宽的噪声状。
      该电源的稳压性能之所以较好,一是由于集电极输出式稳压电路的调整管具有一定的电压放大倍数,二是由于取样电路的取样比等于1,输出端的电压变化直接通过VD4VD5耦合到了取样放大管VT11VT12的发射极。
      为了消除一般OCL电路开机时通过扬声器的冲击电流造成的声,该电源还设计了软启动电路。其工作原理如下:开机后,滤波电容器C3上的正电压通过R10C5充电,C5上的电压按指数规律上升。该电压通过R12VD2加到正电源输出端,同时通过R16VT12的发射极提供电流,使负电源也同时启动。电源电压达到正常值后,正输出电压通过R14给单向可控硅VD3提供触发电压而使它导通。VD3导通后,其阳极电压降低到0.7V以下,故二极管 VD2截止。C5上的电压通过R12VD3放电。延迟时间由R10C5时间 常数决定,本例中此常数为0.33秒,开机时音箱中一点儿声响都没有。
      该电源的效率很高,调整管集电极和发射极之间电压降至1V时,输出电压仍可保持稳定。若市电交流电压为220V时,稳压电路的输入电压设定为±22V (带额定负载),则可以使稳压电源在市电变化±10%时,仍工作在最佳状态。若以调整管压降为7V计算,在满负荷2.4A时的管耗约17W,因此只需较小的散热器,此时效率在70%以上。当调整管压降为3V时,效率为85%。
      总之,该电源电路特点是:具有软启动功能;具有正负电源分别短路或同时短路的保护功能,可省去扬声器保护电路;高效率,约7085%以上;低纹波系数。

    二、制作与调整要点

    1.元器件的选择
      功率输出管VT5VT6选用东芝的2SC3281β70110之间。实验时也曾选用过三肯的2SC 2922,但发现容易产生高频自激。推动管VT4选用NEC2SD401β值为7090VT3也用2SD401β5070之间。当输出管的 β值在100以上时,VT3VT4也可选用国产管3DG1303DG12)。输入级VT1VT2可选用90129015等,β值在100左右,不宜太高,但要求配对;也可选用P沟道结型场效应晶体管,但耐压应不低于40V(因手头无此类管子,故未曾实验)。电阻的功率R6R10应选1W以上, R7R16R19应选12W以上,其余不作要求。电阻 R9采用两只1W0.51Ω电阻并联,作为测量时取样使用。稳压管VD4VD5应选1W以上功率的。单向可控硅可选1A电流的任何型号。
      电源部分的VT7VT8选用MJ29552N3055或其它互补配对管,要求β大些,最好大于80。推动管VT9VT10选用中功率管 3CK93DK9等,β值在5080之间。取样放大管VT11VT12选用90149015β值大于100。还要注意正负电源各对应管的β值应该相近,即大致配对。电容C1C6C7选用涤纶或聚丙烯电容。稳压电源输入滤波电容C3C4采用四只4700μF35V优质电解电容两两并联使用。
      电源变压器功率容量应不小于100VA,次级交流电压双18V,电流3A以上。整流管可用1N5401
    2.调整要点
      电源部分几乎不需要调整。如果电源不能自启动,则应适当减小R10的数值,但应在满载时能够自启动的前提下尽量大一些,以增大延迟时间。功放部分的调整可归结为两项;一是调整R2使输出端电位等于零;二是调整R6使R9上的压降等于0.3V,此时末级静态电流约为1.18A。注意一开始可将电流调得稍小些,如0.9A,等预热一段时间以后再调到上述规定的数值。
    3.电路的变通
      该功放电路稍加改动即可变为 OTL电路,此时稳压电路可以省去负电源部分。OTL电路虽然技术指标的测试结果不及OCL电路,但音色却别有风味。OTL电路由于使用了输出电容器,虽然会影响频率特性,但却使扬声器的安全得到了保障。限于篇幅,此处不再赘述。

    三、主要技术指标

      该功放的主要技术指标如下:最大输出功率为15W);频率响应为5Hz  44kHz (1dB,10W,8Ω);电压增益为24dB;输入灵敏度为0.7V(rms)
      经过反复试听对比,大家一致认为该功放在播放人声时,嗓音显得宽厚圆润,流畅自然,能将演唱者的感情表达得很好。小提琴的表现不毛不燥,解析力很高。但对于动态范围较大的交响乐来说,本功放则显得有些力不从心,但觉得低频量感比较适中,能将各种乐器的轮廓刻画出来。虽在大动态时显得逊色一些,因为它毕竟只有15W的有效值功率。因此它作为家庭欣赏音乐用极为合适,达到了预期的设计目的 。